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CHAPTER G-4  PROBABILITY OF FAILURE OF MECHANICAL OR ELECTRICAL 

SYSTEMS ON DAM GATES 

G-4.1  Key Concepts 

Numerous types of gates are used to release flow from dams. Tainter gates, drum gates vertical 

lift gates, etc are just a few of the many being used throughout the world. Each gate has its own 

operating system which must function when needed. Throughout history man has operated gates 

to control the flow of water. The early Egyptians diverted water by manually opening and 

closing wood gates.  Although the equipment to perform this task has changed greatly 

throughout history the final result stays the same. Gates must be operated to perform there 

intended task. To control operation of gates three things must be provided: Power to move the 

gates, machinery to operate the gate, and the structural gate itself.   

Power can be supplied in numerous ways. Manual power is the oldest and supplest means to 

operate a gate. Manual power references a means by which a human or animal physically 

provides the energy to move the object, in this case a gate. Modern types of manual devices 

which are commonly used to move gate are hand wheel screw actuators. These devices are often 

mechanized by electric motors which perform the task of providing the power to operate a gate.  

The next step up in operation of gates is the electric winch or hoist. These devices are common 

on gates. Power to operate these types of systems is dependent on electrical service. Almost all 

dam gates throughout the world rely on some type of electrical service to operate. Because of 

this, the probability of failure of the electrical system is the first item on any event tree in the 

potential failure of operation of a gate. Because of the importance of electrical power at any 

facility the emergency backup generator has become the standard for redundancy to supply 

power.  

The second critical system which must operate is the machinery. Machinery to operate gates 

varies as much as the types of gates. Typical gates use winches, hoists or hydraulics to operate. 

Winches and hoists have numerous types of lifting equipment. They can be manually operated or 
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more commonly electrically operated. Some are even hydraulically operated. The types of lifting 

devices on winches and hoists vary also. Wire ropes and chains are the most common. Each has 

its advantages.  

The latest means to operate gates is by use of hydraulics. A hydraulic system is dependent on not 

only electrical power but also hydraulic fluid and the means to transfer the fluid. 

The third critical component in any system is the gate itself. For this presentation we will restrict 

the development of calculating the probability of failure of the system to just the mechanical and 

electrical systems. . 

All of these systems have a probability of failure.  It’s this probability that will be addressed in 

this paper and how it relates to the overall potential of failure of the dam and the risk assessment. 

Various means are used to obtain the needed information to determine the reliability of operating 

system of gates.  Two of the most common means are expert elicitation and statistical formulas.  

This chapter will address how to use statistical formulas to predict probability of failure of gates 

on dams. 

Many dams have multiple gates used for releasing water.  Depending upon the flow needed to 

pass during normal and high flow events determines the criticality of gate operation.  If the flow 

volume needed to pass exceeds the available gate opening capability then, mechanical, and 

electrical failure of structural gate operation becomes a critical failure mode.  If electrical failure 

at the project occurs all gates are out of service thus creating a critical failure mode for the 

project.  If one or multiple gates are out of service due to mechanical or structural failure then 

binomial distrubtion is used to determine what the probability of “N” out of “M” gates will fail.  

First one must determine what the probability of an individual gate failure would be and then use 

binomial distribution to determine how many gates could fail.  Therefore the engineers 

developing the probability of failure of gates work closely with hydraulic engineers to determine 

how gate malfunctions affect risk of overtopping or failure of the dam.  Failure of gates will alter 

the hydrographs such that it could potentially result in a normal event turning into an unusual 

high pool event due to inability to release water. 
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G-4.2  Probability of Failure of a System 

Before one can calculate the probability of failure to operate a gate one must know the various 

components which make up the system and the probability of each components failure.  To 

determine which components are critical to operation of a gate one must consider all the 

components from connection to the gate back through the operators and through the electrical 

power source.  If any of the components fail then the system fails.  To calculate the probability of 

failure of a component statistical formulas are used, one such is the Weibull Distribution 

formula. The Weibull Distribution was developed in 1937 by 

Swedish born, Waloddi Weibull and is shown as: 

 

𝑅(𝑇) = 𝑒
− (

𝑇−𝛾

η
)

𝛽

 
Equation G-4-1 

 

where.  

R(T) = Reliability 

T = Time  

γ = Location Parameter 

β = Shape Parameter 

η = Characteristic Life 

From this the CDF or Cumulatiive Probability of failure, F(T) = 1- R(T) 

The Weibull formula does not take into account time when components are not in use.  

Operating gates are an example if a machine that can site for long periods of time without being 

used.  Some components tend to corrode or not work after extended periods without operation.  

Therefore a modified version of the formula called (Dormant-Weibull Formula) is often used. 
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 Dormant-Weibull Formula 

The derivation of the formula was provided to the Corps of Engineers by the Fault Tree software 

developer, Isograph (Reference Isograph Technical Note 2008.11.13 v1).  Also (see equation 

4.48 on page 187 of 'Reliability and Risk Assessment, Henley & Kumamoto) 
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Equation G-4-2 

Where: 

Qn = Probability of Failure over the entire interval n. 

η = Characteristic Life Parameter 

β = Shape Parameter 

γ = Location Parameter 

𝜏 = Inspection Interval or time since last operated 

n = Number of times the component operated in its life. 

The Dormant-Weibull model is a new failure model that allows the user to model a component 

or system that undergoes periodic operation or testing, but is also subject to aging; i.e. the failure 

rate increases with time.  This model also represents a component whose failure will be revealed 

due to periodic usage during normal operations. 

 Unavailability/Probability of Failure Profile 

Figure G-4-1 shows the unavailability profile for a normal, non-repairable Weibull distribution. 

The Weibull parameters are η = 100, β = 2 and γ = 0, and the lifetime of the component is 100 

(all Weibull distributions represented in this document will have these properties, unless stated 

otherwise). The distribution is a smooth curve that goes asymptotically towards an unavailability 

of 1.   
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Figure G-4-1 The unavailability profile for a component modeled using Weibull model 

When using the dormant Weibull model, the equation assumes that the component will be 

functioning after each inspection takes place; i.e. if the inspection reveals a failure it will be 

repaired. Figure G-4-2 shows the unavailability profile for a component, which ages with a 

single Weibull distribution. In this case the failures are dormant and the inspection period is 20 

years. 
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Figure G-4-2 The unavailability profile for a component modeled using the Dormant-

Weibull model 

Note that after each inspection the unavailability increases rapidly.  This is because even though 

the component is assumed to be functioning after the inspection, the age of the component is 

unchanged.  Hence the failure rate will increase more rapidly after each inspection, reflecting the 

increasing age of the component. 

Whereas unavailability, Q(t) is defined as the probability of a component being failed at time t, 

the unreliability, F(t) is the probability that a component has failed at some point between time 0 

and time t.  Put simply, the reliability is the probability of the first failure having occurred by 

time t, assuming the component was working at time O.  

If the age of the component is unaffected by inspections, as is the case in the dormant Weibull 

model, the unreliability profile will be smooth. For this reason, the shape of the unreliability 

profile for a component modeled using a dormant Weibull model will be smooth, regardless of 

whether or not inspections take place. See Figure G-4-3. 
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Figure G-4-3 The unreliability profile for a component modeled using either the Dormant-

Weibull model or Weibull model. (Note that the unreliability at 100 years is 63.21% or 

what is termed the B63.2 life which is typical for a Weibull distribution). 

 Software Approximation 

In order to get exact point and mean values of unavailability for a component or system modeled 

using the dormant Weibull model, it would be necessary to perform a numerical integration over 

the unavailability profile. However, such a procedure would be highly intensive and thus not 

practical from a processing standpoint.   

In order to overcome this problem, software programs use an approximation to determine these 

values. Essentially, the program employs the maximum risk dormant model during each interval 

between inspections. That is, the maximum value of unavailability at the end of each inspection 

interval is taken to be the unavailability for that period. This is illustrated in Figure G-4-4.  This 

approach is consistent with fault tree analysis standards. 
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Figure G-4-4 The unavailability profile for a component modeled using the dormant 

Weibull model.  The dotted line represents the value of unavailability used by software for 

the unavailability during each interval. 

 Results 

For any component that is subject to dormant failures, the introduction of inspections will 

improve both point and mean values of unavailability. This is because repairs can only take place 

after inspections due to the dormant nature of the failures.   

This can be illustrated by comparing Figures G-4-1 and G-4-2.  Note that both the point 

unavailability at the lifetime and the mean unavailability are noticeably less in Figure G-4-2 

where an inspection is taking place at regular intervals, compared to Figure G-4-1, which 

represents a non-repairable component. 

Furthermore, more frequent inspections will further reduce the unavailability/probability of 

failure of the component.  This is illustrated in Figures G-4-5 and G-4-6, which show the 

unavailability profile for components with identical Weibull parameters, and inspection intervals 
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of 10 and 50 respectively. Note that the component with inspections 10 apart has a lower 

unavailability than that with inspections 50 apart. 

 

Figure G-4-5 The unavailability profile for a component modeled using the dormant 

Weibull model with an inspection interval of 10 
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Figure G-4-6 The unavailability profile for a component modeled using the dormant 

Weibull model with an inspection interval of 50 

The unreliability is unaffected by the length of the inspection interval.  Again, this is because the 

age of the component remains unchanged by an inspection, regardless of whether a repair is 

required or not. The only way to change the unreliability profile for such a component would be 

to alter the Weibull parameters. 

G-4.3  Derivation of Unreliability 

For an event of failure rate λ(t), unreliability F(t) is given by: 

 

Equation G-4-3 

(see equation 4.48 on page 187 of 'Reliability and Risk Assessment, Henley & Kumamoto) 



G-4-11 

 

Note that the limits of the integral are nt: and (n-l )-T. This represents non-repairable period 

between inspections with interval τ:. The integral in the above expression is solved as follows: 

 

Equation G-4-4 

Substituting back into the term for the unreliability, F(t), we get the unreliability at the end of an 

inspection interval, Fn: 

 

 

Equation G-4-5 

 

For a non-repairable component, F is the same as the unavailability (probability of failure on 

demand), Q.  Hence, the dormant Weibull formula. 

 

Equation G-4-6 
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G-4.4  Key Elements to using the Weibull/Dormant-Weibull Formula 

 1st Key Element in the Weibull Formulas   

η = Characteristic life 

Definition: The characteristic life is the point in time when we could expect 63.2% of the 

components under study to have failed.  This is called the B63.2 life (Abernathy 2009). 

Example: Its determined that the characteristic life of a component is 25 years, then one would 

expect to have 63 of 100 components fail by that time in history. 

The most accurate means to determining characteristic life of components is to collect data on 

the number of components which have failed and the length of time the component lasted until 

failure.  In addition, it is also necessary to collect data on the number and length of time for 

similar components that are still in operation.  This is commonly called suspended components. 

 

Characteristic life is traditionally gathered through testing of thousands of samples in a 

controlled lavoratory enviroment.  The U.S. Army Corps of Engineers has performed and 

extensive data collection of its mechanical and electrical equipment on flood risk management 

(FRM) projects throughout the United States.  Example of typical results of the data collection 

for an electric motor at USACE FRM  Dams is shown in Table 1 at the end of this chapter. 

Results from this field data collection for were sent to the University of Maryland Reliability 

Analysis Center (Mosleh 2013) to determine the characteristic life and beta shape parameters 

using Bayesian Weibull Analysis.  The results of this study is shown in Table 2. 

An alternative way of demining characteristic life and beta shape Weibull parameters is to plot 

the failure data of components on Weibull plotting paper (ln-ln paper) to estimate the two 

parameters for the Weibull distribution.  An example of the Weibull plotting for electric motors 

is shown in Figure G-4-7.  Figure G-4-8 shows the resulting CDF using the two Weibull 

parameters for the electric motors. 
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Figure G-4-7 Typical results of plotted data collected for Electric Motors. The results are 

characteristic life is 91 years and the beta shape parameter is 4.05. 

 

Figure G-4-8 Typical ploted cumulative probability of failure Weibull curve for a electric 

motor showing characteristic life of 91 years at a probability of 63.21% 
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When the Corps performed its nationwide data collection of its components it collected data 

from dams over the entire range of projects throughout the U.S. with average maintenance.  In 

reality, many components have a shorter characteristic life in some environments and conditions 

then others.  Condition is always a factor in determining the probability of failure of a 

component since it reflects both the maintenance and environmental conditions it is has seen.  

Inspections of the components may be taken into account to adjust the charateristic life a 

predetermined adjustment factor depending on its condition rating.   In addition, environment, 

stress levels and temperature factors are considered and adjustment to the characteristic life 

predetermined factor (Patev 2005 and Patev 2013). 

For example. if a component is showing extreme wear or if it is exposed to a harsh salt water 

environment or heavy silt build up at an early stage of its life then the characteristic life of the 

component is adjusted down by a predetermined factor.   

 2nd Key Element in the Weibull Formulas 

β = Shape Parameter  

Shape parameters are also calculated from the data which is collected and analyzed and is the 

slope of the Weibull probability plot line from failure data.  The hazard function for the Weibull 

distribution is sometime referred to as the “bathtub” curve with varying parameters over time 

as shown in Figure G-4-9. 
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Figure G-4-9 Typical hazard function “bathtub” curve for Weibull distribution 

Figure G-4-9 defined the shape parameters as: 

β < 1    Implies quality problems or insufficient “Burn In”, usually associated with beginning of a 

components life. 

β = 1    Random failures or failures independent of time in service. 

β > 1    Wear out failures at a definite or predictable end of life. Typically age related due to 

service conditions such as corrosion, wear, or fatigue cracking. 
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Figure G-4-10 Typical ploted probability of failure Weibull curve for a electric motor 

showing beta shape paramteter 

Figure G-4:10 shows a typical Weibull curve for an electrical motor which has been generated 

from data which was collect from dams throughout the Corps inventory.  It’s generated using the 

Weibull formula and plotted as failure data in Figure G-4-7 above. As defined before the slope of 

the line represents the shape parameter for the data set. Figure G-4-11 show the how different 

shape parameters affects the reliability values for the Weibull distribution. 

 
Figure G-4-11 Typical reliability values curve showing varying of the shape paramteter 
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 3rd Key Element in the Weibull Formulas  

γ = Location or Shift Parameter 

The shift or location parameter is used as part of a three parameter Weibull distribution or the 

dormant Weibull distribution.  The location or shift parameter is the life period where the 

component is failure free, i.e., pdf or f(t) is zero.  This basically shifts the overall probability of 

failure curve to represent the actual age of the component where it started to see failures.  This 

shift may be used to reflect lack of actuation of a component or if the component may be in a 

cold or standby mode.  The shift parameter is shown in Figure G-4-12. 

 

Figure G-4-12 Location or Shift Parameter on Weibull Distribution 

Example: If a component was originally installed in 1965  as a standby component and did not 

see activation until 1995 the location parameter of the new component would be equal 30 years.  

If the component is original then the location parameter would be equal to  0. 
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 4th Key Element in the Dormant Weibull Formula  

𝜏 = Inspection Interval 

𝜏 = Inspection Interval.  Time in (years) between when the component was last inspected or 

operated properly to present. 

Example: A component was last operated 1 month ago and thus the inspection interval is: 

𝜏 = 1 month/12 months per year = .0833 

 Example using the dormant Weibull formula to calculate the probability of failure 

of a wire rope 

For demonstration, a wire rope is 50 years old.  The characteristic life of a wire rope is 89 years 

and the shape parameter is 2.17 from USACE data results.  The wire rope operates in a normal 

environment and was last operated or inspected 1 month ago. On average the wire wipe operates 

12 times a year. 

Using the Dormant-Weibull formula: 

η = characteristic life =89 

β = Shape Parameter = 2.17 

γ = Location Parameter = original wire rope = 0 

𝜏 = Inspection interval or time since last operated in years = 1 month/12 = .08333/year 

n = Number of times the component operated in its life = 50 years*12 = 672 

Unreliability/Unavailability: 
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𝑄𝑛 = 1 − (𝑒(
(672−1)(.083)−0

89
)

2.17

) (𝑒−(
672(.083)−0

89
)

2.17

) =  .0012 𝑡ℎ𝑖𝑠 𝑦𝑒𝑎𝑟 
Equation G-4-7 

 

Knowing the probability of failure of an individual component in a system is good but the goal is 

to find the probability of failure of the entire system which operates a gate.  The most common 

way of analyzing an entire system is with a fault tree analysis (FTA) software program.   

G-4.5  How a Fault Tree works 

Each individual components probability of an event happening/probability of failure is calculated 

by the FTA program using the same Weibull formulas shown earlier (Patev 2005).  The FTA 

program is set up in a logic tree arrangement of the components which make up a system as 

shown in Figure G-4-15.  The components combine into what are called gates or faults.  The 

gates represent the probability of those events happening based on those components that make 

up the fault.  There are various types of gates used in FTA but the two most common are AND 

and OR gates.  OR gates as shown in Figure G-4-13 represents a scenario in which any of the 

components fails abd the entire system fails.  AND gates as shown in Figure G-4-14 represents 

systems which have redundancy and all need to fail for the fault or AND gate to fail.  An 

example of an AND gate is three pumps on a hydraulic system in which all three pumps would 

need to fail for the entire hydraulic system to fail to operate. 
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 Formulas for (OR Gates / AND Gates)  

 

OR gate = (Q1+Q2+Q3)-(Q1*Q2)-(Q1*Q3)-(Q2*Q3)+(Q1*Q2*Q3) 

AND gate=Q1*Q2*Q3 

Example of a simple fault tree showing the probability of failure of a wire rope drive system 

based on a OR gate of four components is shown in Figure G-4:16. 

 

Figure G-4-14 OR gates Figure G-4-13 AND gates 
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Figure G-4-15 Example of Wire Rope System Fault Tree 

There are many software developers which can perform FTA.  Reliability Workbench is a FTA 

software tool developed by Isograph that is a typical software that is demonstrated in this section. 

Appendix G-4-1 shows a simple fault tree example of a 50 year old wire rope driven radial gate. 

Event Trees for Mechanical and Electrical Equipment for Gates Now that we have calculated the 

probability of failure of the gates at a project we determine  how it affects the overall project 

Risk Assessment  Many scenarios can be developed for risk of failure of a dam and one of these 

is being the gates fail to open prevent passing of water through the dam thus possible 

overtopping of the dam.  Event trees are developed to layout the events which could occur to 

cause a failure of the project.  The probability of failure calculated earlier is used in the event 

trees. 

Three simple event trees are shown below in Figures G-4-16-18 demonstrating the various ways 

electrical, mechanical or controls failure could affect risk. 
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Figure G-4-16 Electrical Power Failure Affects Risk 

 

Figure G-4-17 Mechanical Drive Fails to Open Gate 

 

Figure G-4-18 Controls Fail to Open Gate 
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